
A Web Interface for MIT’s Library Access to Music Project

Josh Mandel

Course VI AUP

May 7, 2005

1 Introduction

MIT’s Library Access to Music Project launched a new kind of music library in October 2004,
allowing community members to listen to more than 1700 CDs over the on-campus cable television
network. To access LAMP, users select music from a Web site, then listen by tuning a TV to the
assigned channel. This paper describes my design of LAMP’s Web site, which sits at the interface
between the MIT user community and the back-end broadcast equipment.

LAMP has been popular since its October 2004 launch, with over 12,000 songs played, 1200
distinct users in total, and about 100 distinct users each week. This semester I created a campus
music map to show how music choices vary across MIT’s campus. I also designed an algorithm to
recommend new music to users, along with an experiment to determine the algorithm’s efficacy.
The algorithm’s performance was mixed, but novel recommendations were rated significantly better
than a random choice. In this paper I also describe design decisions and user-interface challenges
in building the Web site.

2 Overall Goals

LAMP’s Web site provides thousands of users access to thousands of CDs, and my primary goal
was ease of use. The site was designed with a few use cases in mind:

Jill comes to the site knowing what she wants to hear. She should be able to locate her
music and play it over LAMP with very little overhead. If the music is unavailable,
she should be able to request a new purchase.

Jack comes to the site because he heard a song he liked on one of LAMP’s TV channels.
He should be able to easily learn what music it was, find and play similar music, or
buy his own copy.

Sam wants to learn more about what MIT students listen to. He should get a broad
sense of community preferences, with the ability to drill down into particular sections
of the campus.

I designed the site to serve these users, responding quickly to requests and providing plenty
of information about CDs, songs, artists, performers, composers, and conductors. I also wanted

1

to provide a rich set of links between songs and albums, allowing users to easily navigate a web
of music. Every page should provide links to similar pages, allowing users to browse LAMP’s
collection and discover new music. The site was also designed to foster community. Users should
feel connected to one another through music, and information should be available about who’s
using the system at any time, as well as a historical overview of usage.

3 A Tour of LAMP’s Web site

To get a better idea of how the system works, we’ll start out with a tour of LAMP’s Web site from
the user’s perspective. From here, we’ll delve into the technical details of how the site was designed
and how it operates.

3.1 Playing A song

Jill, then, logs into LAMP because she wants to play some music by Billy Joel. She first connects
to https://lamp.mit.edu with an MIT certificate installed on her web browser, where she sees
the following welcome screen and types “Billy Joel” into the search box.

A list of eleven albums is returned, along with a link to a list of 156 songs.

2

Jill decides to look at the list of available songs, so she clicks on the “Songs” link.

Finding the song “Worse Comes to Worst,” she clicks the “List Programs” link to show all
programs containing the song:

3

Finally, she clicks on “Play Program 2” and tunes her TV to listen.

3.2 Campus Music Map, Making Programs

Now consider Sam, who wants to learn more about music on campus. After logging into LAMP’s
Web site, he chooses the campus map to see what’s popular at Random Hall:

Sam sees that They Might Be Giants are the top band, and decides to listen to some of their

4

music by creating his program of their music. He clicks “Create Program”:

Now he browses the collection, choosing songs to add:

Once the program is long enough, he submits it to be ripped by LAMP’s CD changers:

5

4 Technical Design

LAMP’s Web site is the interface between MIT community members and the back-end broad-
cast system. The site shows users what music is available, and allows them to control playback.
Authorized requests are sent to a back-end broadcast server using the short set of commands below.

Command Effect

lamp-play Play specified song on specified channel
lamp-pause Pause music on specified channel
lamp-resume Resume playback on specified channel

lamp-stop Stop playback on specified channel
lamp-channel-status Mark specified channel as “available” or “in use”

In Web development, LAMP’s acronym has another meaning: “Linux, Apache, MySQL, and
PHP.” Given the eponymous name and my background using the platform, LAMP was a natural
fit for LAMP.

In broad terms, LAMP’s Web site works according to Figure 1. Users authenticate before
entering the site; from there, a central Display module provides links to all of LAMP’s functions.
Requests are sent to a separate handling facility which processes them and returns the user to the
Display module, which now provides the appropriate results. We’ll take a concrete example of this
kind of transaction shortly.

Most projects of this scope would require passwords for authentication and cookies to track state.
LAMP, however, is fortunate enough to serve a community with a better option: SSL certificates.
Essentially every member of the MIT community already has an SSL certificate, signed by MIT’s
key. LAMP’s Web site uses apache-ssl, requiring users to present their MIT-signed certificate for

6

Figure 1: LAMP Web site Overview.

authentication. As an added bonus, certificates can also be used to keep track of state, eliminating
the need for cookies: since every exchange between LAMP and the user is made over SSL, the
certificate is presented with each request, and the unique athena username is used as a session
identifier. This approach means that a single user cannot participate simultaneously in multiple
LAMP sessions, but the constraint is natural enough for the domain: a user is only allowed, after
all, to control music on one channel at a time.

Display and processing are done in PHP, using an object-oriented approach. Objects repre-
senting songs, albums, and programs are built on-the-fly from persistent data stored in a MySQL
database. A depiction of this mechanism and a map of objects are shown in Figure 2. For instance,
in a songs table in the database, each row holds the ID, title, and performer for one song. A PHP
Song object is created on-the-fly by loading the appropriate data into memory from the database.
The object then provides methods to display data, find related albums, generate web links, etc.

Music Object

music id: int
music type: “song” or “album”
title: string
artist: string
filename: string
UPC: string

Figure 2: On-the-fly object creation from persistent data, and a set of objects.

One challenge was to keep track of the results of users’ search requests. For instance, searching
LAMP for “The Beatles” finds about twenty albums and three hundred songs. In this case, the
result is broken down into several pages, and to preserve state across page requests, I save entire
list as a “Searchset” in the database. Subsequently, search results are displayed one page at a time
by loading the Searchset from the database and extracting the appropriate page.

A concrete example goes a long way in elucidating the system. When a user searches for
music by Fiona Apple, the display module generates a link to the handling facility at the ad-
dress: lamp/process-requests?req=basicsearch&query=Fiona%20Apple. The handling facility

7

logs the request and performs a search with the following code, where $t is “Fiona Apple”:

function process_basic_search($t) {

$s = new Searchset("basicsearch", $t);

return $s->link();

}

A Searchset is created, and subsequently provides a link back to the Display module. Inside
the Searchset constructor, the search term is tokenized into the two terms “Fiona” and “Apple,”
stored in the array $words. These are used to construct a database query which provides a set of
album IDs:

// construct query by AND’ing together token words

$which_tokens = " where ";

for ($i = 0; $i < sizeof($words); $i++) {

$words[$i] = " tokens like ’%$words[$i]%’ ";

}

$which_tokens .= implode($words, " and ");

// execute query using the derived $which_tokens string

$this->albumquery = ‘‘SELECT album_id FROM albums $which_tokens

order by album_upc’’;

At this point, the Searchset is established, saved to the database, and finally returns a link to
itself. The user is directed via this link back to the Display module.

This approach provides a relatively clean separation between display code and internal logic. On
the display side, I took a light-weight approach to site design, cutting out unnecessary exchanges and
keeping page size small and browser requirements low. LAMP uses HTML and CSS for formatting,
displaying images only when text is impossible (i.e. for corporate logos and campus maps). The
site does not rely on java or javascript.

5 User-interface Design

Creating an intuitive Web interface for LAMP was challenging because the service does not mesh
well with users’ existing paradigms. First, no one is used to a service where music is selected
over the Web but played back over cable TV. Next, users are not familiar with LAMP’s notion of
“programs.” For copyright reasons, users must play an entire program of songs in sequence and as
a unit; so although the service is on-demand, the basic unit of playback is the program, not the
song. The natural paradigm is to search for a song and play it back, but LAMP requires users first
to search for a song, then to select a program containing that song, and finally to play back the
program.

I tried to forestall these concerns by providing documentation and on-line guidance at decision
points. This guidance begins with LAMP’s welcome screen, where the basic work-flow is explained
as a three-step process (Figure 3). When a user searches for a song, results are displayed alongside
links to available programs. In observing users unfamiliar with LAMP, I found that their com-
prehension was quite sensitive to the way these links were named. For instance, confusion arose

8

Figure 3: LAMP Web site welcome screen with instructions.

when a search returned links to “Find Programs,” but changing the link to “List Programs” helped
clarify that clicking this link was the next step in the process.

A good example of a self-documenting feature is LAMP’s program creation page. When a user
chooses to create a new program, she is immediately presented with a concise set of instructions in
the main page body (see Figure 4), as well as a persistent summary remains on-screen throughout
the process:

Search for music and use the [Add To Program] links to add songs to your program.
When you have six songs or thirty minutes of music, click “submit program” above.

I also provided a more detailed user’s guide that explains how to find, play, and listen to music
on LAMP. This guide is available from every LAMP page with one click.

My goal at all times was to keep the user interface simple. LAMP’s pages load quickly and
strive to provide a large number of well-labeled links.

6 LAMP Usage

LAMP’s original launch in 2003 was much acclaimed but short-lived. That service, which allowed
users to play individual songs rather than programs, saw more than three hundred distinct users
on its first day of operations, and over a hundred distinct users on each of the following two days.
The current service was launched in 2004 with less fanfare, and fewer users. Figure 5 shows weekly
usage since the 2004 launch, indicating an early peak of 160 users per week and a slow decline
to about 100. The most noticeable gaps are due to school holiday (December to January) and
a system outage when LAMP’s server was compromised by Belizean hackers (March). (Because
the back-end broadcast system is insulated from the public interface, the hackers could not access
LAMP’s stored music.)

9

Figure 4: LAMP Web site program creation page.

 20

 40

 60

 80

 100

 120

 140

 160

 180

10/01/04 11/01/04 12/01/04 01/01/05 02/01/05 03/01/05 04/01/05 05/01/05

D
is

tin
ct

 u
se

rs
 p

er
 w

ee
k

Figure 5: Web site weekly usage

LAMP sees a wide variety of users, from the merely curious to the die-hard addicts, as shown
in Figure 6. Of 1200 total users, about 375 played just one program; about 80 are power-users with
more than three-hundred song plays; and the distribution falls off steeply in between.

On the one hand, just watching LAMP on TV is vegetative. But on the other hand, there’s
something fulfillingly mesmerizing about the smooth, cyclic scrolling. And people do watch what
others are playing, with some very interesting results! One night in April, LAMP filled to capacity
with users all playing an album by Paul Simon. Users also influence each other on a smaller,
less orchestrated scale. Indeed, it happens often that a user will see an interesting song on one
channel and then be compelled to play something similar on her own channel. One example of this
phenomenon: a user played Beethoven’s Ninth Symphony on LAMP, and six minutes later another
played Eine Kleine Nachtmusik on a different channel.

10

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000

N
um

be
r

of
 u

se
rs

Number of song plays

1-50 song plays: 681 users

51-100 song plays: 119 users

Figure 6: Histogram of song plays per user

7 A new campus map

With usage data from LAMP, I constructed a campus music map to show how musical tastes vary
from dorm to dorm at MIT. The map is a playful take on campus culture, giving users a qualitative
overview of who plays what, and where.

Figure 7: Campus music map

The map was constructed by finding the “Top Ten” most-played albums for users in each
dorm, and most had about ten users supporting them. The map also provides images taken from
whereis.mit.edu, displaying the location of each dorm on campus along with the music.

One surprising result demonstrated by the map is LAMP’s popularity with graduate students as
well as undergrads. Grad dorms are represented strongly, with Sidney Pacific, Tang, and Westgate
each playing more songs than some undergrad dorms.

The map also shows that users come from all parts of campus, and broadly speaking, tastes vary
dramatically from place to place. On the one hand, the map indicates trends likely to re-enforce
campus stereotypes: for example, two of the top albums at Random Hall are by the nerdy They
Might Be Giants. But at the same time, the map reveals some “unexpected” selections: at Bexley,

11

The Phantom of The Opera, Joseph and the Amazing Technicolor Dreamcoat, and Jesus Christ
Superstar all made the top ten.

8 Predicting Musical Preferences: an Experiment

With over 100,000 song plays by 1200 users, LAMP’s usage data contain a wealth of information
about musical preferences on campus. To harvest some of this information, I designed an algorithm
to recommend new music to users based on their choices and those of others. To evaluate the effec-
tiveness of my algorithm, I ran an experiment asking users to listen to and rate the suggested music
on a few criteria. A control group was given music selected at random from LAMP’s collection.

8.1 Music Recommendation Algorithm

My algorithm for suggesting music is perfectly simple: I constructed a matrix of (All Albums vs.
All Albums) and populated it by iterating over LAMP’s users. For every pair of albums (i, j), i > j

played by one user, I incremented the value of the matrix at location (i, j). Once constructed, the
matrix contained at location (i, j) the number of users who had played both album i and album j

on LAMP, which I call the score, S(i, j). Recommendations were made for a particular album i by
searching row and column i of the matrix for cells with the highest values and recommending the
corresponding columsn and rows, as in the example in Figure 8.

— — — — —

S(1, 0) = 2 — — — —

S(2, 0) = 2 S(2, 1) = 5 — — —

S(3, 0) = 4 S(3, 1) = 0 S(3, 2) = 1 — —

S(4, 0) = 1 S(4, 1) = 1 S(4, 2) = 2 S(4, 3) = 3 —

Figure 8: Example score table for a five-album collection. A search for recommendations based on
Album 3 would return, in order, Album 0, Album 4, and Album 2.

8.2 The Experiment

The pressing question, of course, is how does such a simple algorithm perform? Looking at the
algorithm’s recommendations casually, it seemed that most were pretty good; in most cases the
recommended album at least fell in the same genre as the input album. Some recommendations
were particularly astute (If you like an album by The Counting Crows, you might like one by
Dave Matthews Band), but others seemed awkward (If you like Paul Oakenfold’s Tranceport, you
might like Frank Sinatra). To objectively evaluate the algorithm’s performance, I ran the following
experiment.

8.2.1 Experimental Design

After selecting a program to play on LAMP, users were asked instead to participate in an ex-
periment. They were informed that this was an experiment to evaluate a music recommendation
algorithm, and given the option to participate or decline. Users who participated were placed in a
control group with 25% probability, or an experimental group with 75% probability. In both cases,

12

users were asked to listen to a program and rate it on a scale of 1 to 5 overall (1 means dislike
strongly, 5 means like strongly). Users also rated the program on similarity to their original selec-
tion (1 means strongly dissimilar, 5 means strongly similar), and indicated whether they had ever
heard the selection before. Users in the control group were given a program selected at random
from LAMP’s entire program inventory; users in the experimental group were given a program
derived from the album with the highest score according to the recommendation algorithm.

8.3 Results

Overall, about 500 offers were extended to participate in the experiment; of these, about 110 were
accepted, but only 72 garnered responses. I evaluated these responses using a few statistical tools.
First, the following table shows the mean and standard deviation for overall score and similarity
score, as well as the percent of people who had heard the recommended selection before.

Condition Number Respondents Overall Score Similarity Score Heard before?

Control 15 3.3±1.0 2.4 ± 1.0 53%
Experimental 57 3.6±1.1 3.1 ± 1.4 68%

Clearly these numbers are not astonishing. We see that average scores were higher for the
experimental group than the control group, but by a small margin. To determine whether this
effect was significant, I created a probabilistic model for each condition based on the distribution
of responses, and I ran a 10,000-trial Monte-Carlo simulation to determine how often scores were
higher for the experimental group vs. the control group in a 70-person trial. The mean overall score
was higher in just 85% of trials, whereas the mean similarity score was higher in 98% of trials. So
it seems reasonable to conclude that the algorithm generated programs significantly more similar
to the user’s original choice than a random selection process; but these were not significantly better
liked, using the conventional p=0.05.

If, however, we only consider responses where the user had never heard the music before, a
significant effect emerges. In this case, the Monte-Carlo simulation shows that average scores are
higher in the experimental group 98% of the time. In other words, the recommendation algorithm
beats a random selection when both suggest novel music.

Overall performance of the recommendation algorithm was disappointing, but not necessarily
surprising. The approach was perhaps too simple to perform really well, but it was interesting
to see how an unsophisticated approach woulddo. And at the same time, the recommendation
algorithm performed significantly better than chance at recommending novel music, which is one
of its main goals. After all, people take recommendations to learn about music they haven’t heard
before.

9 Future Improvements

I think a key factor in LAMP’s continued popularity will be its ability to keep up with new music.
Today, all the CDs in the system are more than one year old, and the absence of current hits will
drive some users away. We maintain a list of buy requests that currently contains over 300 UPCs,
indicating that users are ready for new music. On the other hand, usage has been quite stable,
and the community is obviously enjoying the system. One user appreciated LAMP so much that
he donated his entire CD collection to the library!

13

Another important direction will be to improve the community aspect of LAMP’s Web site.
When users begin to create their own programs, implementing a rating system will become impor-
tant so users can more easily find what they want. For instance, users may be able to vote for or
recommend a program they like, causing it to appear higher in future search results.

As far as the automated recommendation system, a more effective approach might be to use a
collaborative filtering recommendation system. This way, sets of users with similar tastes could be
identified, and better recommendations made.

10 Conclusion

This semester I improved LAMP’s Web site by adding a system for users to create their own
programs, a browse feature, a campus music map, and a system for recommending music. I also
improved the user-interface by separating the playback process into steps, describing the process in
clear language and adding on-line help. An experiment to determine the effectiveness of the music
recommendation system produced mixed results, but the algorithm performed well at recommend-
ing novel music.

Overall, LAMP’s Web site has been very successful, serving about a hundred distinct users per
week. Someone is always using the service, and most nights five or six channels are in use at once.
And this overview, of course, discounts LAMP’s passive users who simply tune their TV and listen
to whatever’s on.

11 Acknowledgements

First of all Keith Winstein. Thank you, Keith, for sharing your vision and letting me play a role.
It’s been a lot of ups and downs over the past four years, and though the lows were low, the highs
sure were high. I am forever indebted.

Thanks, also, to Hal Abelson for supervising this work, to iCampus for sponsoring it, and to
French House for being such willing guinea pigs.

14

